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We present a general method to construct one-dimensional translationally invariant valence-bond solid states
with a built-in Lie group G and derive their matrix product representations. The general strategies to find their
parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For
quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one
consists of two virtual SU�2� spin-J variables in each site and another is formed by using two SO�2S+1�
spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are
discussed in detail. Moreover, two types of valence-bond solid states with SO�5� symmetries are further
generalized and their respective properties are analyzed as well.
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I. INTRODUCTION

In recent years, the study of topological order has become
a common issue in condensed-matter physics and quantum
information theory.1–7 Historically, this concept was pro-
posed to describe fractional quantum Hall states,8 which are
incompressible quantum liquids with a finite-energy gap to
all bulk excitations. These new quantum phases of matter
cannot be described by a local-order parameter with sponta-
neous symmetry breaking. So the discovery of fractional
quantum Hall effect brings great challenge to the Ginzburg-
Landau theory, which is a cornerstone paradigm to charac-
terize phases and phase transitions in condensed-matter
physics. From the viewpoint of quantum information theory,
the appearance of a long-range quantum entanglement plays
an essential role in the topologically ordered states. How-
ever, a general multipartite entanglement measure that cap-
tures the most relevant physical properties is still lacking
because the number of parameters required to describe a
quantum many-body state usually grows exponentially with
the particle number.

The topological order appears not only in the two-
dimensional fractional quantum Hall states but also in one-
dimensional �1D� systems, for instance, the quantum integer-
spin chains. In 1983, Haldane9 predicted that quantum
integer-spin antiferromagnetic Heisenberg chains have an ex-
otic energy gap. Later, Affleck, Kennedy, Lieb, and Tasaki
�AKLT� �Ref. 10� found a family of exactly solvable integer-
spin models with valence-bond solid �VBS� ground states,
and the presence of an excitation gap can be proved rigor-
ously. In a spin-coherent-state representation, these VBS
states share a striking analogy to the fractional quantum Hall
states.11 Although the two-point spin correlation decays ex-
ponentially, den Nijs and Rommelse12 found a hidden topo-
logical order in the S=1 VBS state, which is characterized by
nonlocal string order parameters. For the S=1 VBS state, the

long-range string order and the fourfold degeneracy in an
open chain can be understood as natural consequences of a
hidden Z2�Z2 symmetry breaking.13,14 For the standard
integer-spin Heisenberg models, the existence of spin-S /2
edge states was also verified by quantum field-theory
mappings15 and numerical calculations,16 which coincide
with the VBS picture of the AKLT models. Experimentally,
the VBS picture for S=1 Haldane chain was supported by
the electron-spin-resonance studies17,18 of the compound
Ni�C2H8N2�2NO2�ClO4� �NENP�, the NMR imaging,19 and
the magnetic neutron-scattering study20 of the quasi-one-
dimensional material Y2BaNiO5.

The one-dimensional VBS states can be represented in a
matrix product form.21–23 Moreover, it was found24 that the
density-matrix renormalization group,25 the most powerful
numerical method for one-dimensional quantum systems,
converges to a matrix product wave function as its fixed
point. This important observation stimulates the formulation
of the numerical techniques in one dimension by using the
matrix product variational wave functions.26 From a quantum
information perspective, the validity of the matrix product
variational ansatz depends on whether the true quantum
ground states of the system obey an area law of entangle-
ment entropy.27 In this sense, the VBS states are only slightly
entangled because their entanglement entropies have upper
bounds even in the thermodynamic limit. Recently, these
VBS states have received considerable attention since they
provide a playground to test the proposed measures of mul-
tipartite entanglement.28–30 Toward the potential applica-
tions, it was suggested that the VBS states ensure
measurement-based quantum computation.31 For the S=1
VBS state of the AKLT model, Brennen and Miyake32 have
shown that a gap-protected measurement-based quantum
computation can be performed within the degenerate ground
states.
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In this paper, we will introduce one-dimensional transla-
tionally invariant VBS states with a built-in Lie group G and
present a general method to construct their parent Hamilto-
nians. For quantum integer-spin-S chains, we focus on two
classes of VBS states. The local spin-S states are formed by
two virtual SU�2� spin-J variables in the first class and by
two SO�2S+1� spinors in the second one. To illustrate the
method, we choose the S=1 fermionic VBS state with virtual
spin J=1 as an explicit example to find the parent Hamil-
tonian. Apart from the S=1 VBS state with virtual spin J
=1 /2 and the S=2 VBS state with virtual spin J=3 /2 as the
intersection elements, the VBS states of the two classes are
shown to be topologically distinct to each other, which can
be characterized by their edge spin representations in open
chain systems. We also apply our method to investigate
SO�5� symmetric spin chains and discuss several VBS states
with interesting properties.

The outline of this paper is structured as follows. In Sec.
II, we will introduce VBS states with a Lie group symmetry
and derive their matrix product representations. In Sec. III,
we will focus on quantum integer-spin chains and study two
topologically distinct classes of VBS states including spin-S
VBS states formed by virtual SU�2� spin-J particles and by
virtual SO�2S+1� spinor particles. Moreover, a spin-1 fermi-
onic VBS state is extensively studied as an example and we
construct its parent Hamiltonian explicitly. Section IV is de-
voted to the SO�5� symmetric VBS states and their physical
properties. In Sec. V, some conclusions are drawn.

II. GENERAL CONSTRUCTION OF VBS STATES

A. Matrix product form

We begin with a quantum one-dimensional chain with N
lattice sites. In each site, the states ��m�� �m=1, . . . ,d� trans-
form under a d-dimensional irreducible representation �IR�
Gd of a Lie group G. Let us imagine that the physical Hilbert
space is formed by two virtual identical particles, whose in-
ternal quantum numbers ����� ��=1, . . . ,D� transform under
the D-dimensional IR GD of the same Lie group G. Here we
require that both singlet representation GI and IR Gd are
included in the tensor product decomposition of two GD’s.
The first requirement means that GD is a self-conjugate IR,
i.e., the complex-conjugate representation of GD is equiva-
lent to GD. The latter requirement can be implemented by the
projection operator onto the physical Hilbert space33

P = �
m=1

d

�
�,�=1

D

P�,�
�m	 �m�
�,�� , �1�

where P�,�
�m	 is the Clebsch-Gordan coefficient defined by

P�,�
�m	 = 
Gd ,m �GD ,� ;GD ,��. For VBS states in a periodic

chain, each lattice site forms a valence-bond singlet �I� with
its neighboring sites by pairing two virtual particles �see Fig.
1�. Thus, the wave functions of the VBS states can be ex-
pressed as

��� = ��k=1
N Pk,k̄��I�1̄2�I�2̄3 ¯ �I�N̄1, �2�

where the valence-bond singlet �I� is given by

�I�ij = �
�,�=1

D

Q�,����i � ��� j . �3�

Here Q�,�= 
GI , I �GD ,� ;GD ,�� is the Clebsch-Gordan coef-
ficient of contracting two virtual GD representations to form
a singlet representation GI.

In the present formalism, the VBS states can be easily
written in a matrix product form. Since P�,�

�m	 and Q�,� can be
viewed as the matrix elements of D�D matrices of P�m	 and
Q, the VBS states in Eq. �2� can be thus written as the fol-
lowing matrix product form:

��� = �
m1¯mN

Tr�A�m1	A�m2	
¯ A�mN	��m1 ¯ mN� , �4�

where A�m	= P�m	Q is a D�D matrix.
In periodic boundary conditions, the VBS states are in-

variant under lattice translation and transformation of the Lie
group G by construction. Although no local order parameters
can be found to characterize these states, the A�m	 matrices
can fully determine their physical properties and render a
“local” description. In open boundary conditions, edge states
emerge at the two ends of the chain and then the matrix
product form of the VBS states is given by

���,�� = �
m1¯mN

�A�m1	A�m2	
¯ A�mN	��,��m1 ¯ mN� , �5�

where the matrix indices � and � denote the edge states.
These edge degrees of freedom are described by two frac-
tionalized particles transforming under GD representation of
the Lie group G. Actually, the edge states and their represen-
tations are characteristic features of the VBS states because
they fully determine the local A�m	 matrices.

Another useful way to represent the VBS states is to use
boson or fermion realization methods. To illustrate this
method, we trace back to the tensor product decomposition
of IRs of Lie algebras. According to the group theory, the
physical states �m� under the exchange of the two identical
virtual particles are either symmetric or antisymmetric de-
pending on Gd and GD. Thus, the two virtual particles with
fermion statistics create the antisymmetric states, while the
bosonic particles yield the symmetric ones. In some cases,
there are still several channels with the same exchange sym-
metry and additional projection has to be used to single out
the physical states in Gd. For example, the fermionic realiza-
tion of a spin-2 VBS state with virtual spin J=3 /2 was con-
sidered in Ref. 34. In this case, both site-quintet states �S
=2� and site-singlet state �S=0� are allowed for two spin-3/2

� � � � � � �
1 2 3 · · · N

� � � � � � �
1̄ 2̄ 3̄ N̄

��
��

��
��

��
��

��
��

��
��

��
��

��
��

FIG. 1. The schematic of the VBS states with a built-in Lie
group G. Each dot denotes a virtual particle transforming under GD

irreducible representations of Lie group G. The solid lines represent
valence-bond singlets formed by two virtual GD irreducible repre-
sentations on the neighboring sites and the circles denote the pro-
jections of the virtual particles in each lattice site onto the physical
Gd irreducible representations.
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fermions on a single site and an extra projection can remove
the unphysical site-singlet state. There also exists the
Schwinger boson realization that symmetrizes several funda-
mental IRs to form higher dimensional Gd’s.11,35–37 In fact,
all these boson/fermion realization methods play the role of
�sometimes partially� deleting the unphysical states.

B. Parent Hamiltonian: Locating the null space

Following the spirit of the AKLT model, one can con-
struct the parent Hamiltonians such that the VBS states in
Eq. �2� are their unique ground states. It is most convenient
to work with the matrix product form. For the matrix product
states in Eq. �4�, one can readily find that their reduced den-
sity matrix �l of l successive sites has a rank of D2 at most.
This suggests that the reduced density matrix �l of these VBS
states always has null space for sufficient large l. These
states are annihilated by the local projection operators sup-
ported in the null space. Hence, they are always exact zero-
energy ground states of the translationally invariant Hamil-
tonians

H = �
i

hi, �6�

where hi contains a sum of the positive semidefinite projec-
tion operators supported in the null space from site i to i+ l
−1. Previously, the parent Hamiltonians of the matrix prod-
uct states for spin-ladder systems had been studied by similar
methods.38

Let us begin with the simplest cases with only nearest-
neighbor �NN� interactions. Now the null space can be ob-
tained from the VBS picture of these states. The Hilbert
space of two neighboring sites can be divided into a direct
sum of different IR channels according to the tensor product
decomposition Gd � Gd. Once a valence-bond singlet of two
virtual GD’s is formed, the remaining two particles of adja-
cent sites can transform under a direct sum of IRs resulting
from GD � GD. Therefore, the IR channels contained in Gd
� Gd but absent in GD � GD constitute the null space in the
two-site-reduced density matrix.

The above steps to locate the null space can be embedded
in a matrix product formalism. Practically, we rewrite the
matrix product states in Eq. �4� as

��� = Tr�g1g2, . . . ,gN� , �7�

where the local matrix gi is defined by

gi � �
mi

A�mi	�mi� . �8�

To locate the null space, we resort to a “coarse-graining”
procedure that converts the spins of adjacent sites to block
spins. Since the VBS states are invariant under lattice trans-
lation, we can block the spins in sites 1 and 2 as

g1g2 = �
m1,m2

A�m1	A�m2	�m1,m2� = �
G12,M12

G

B�G12,M12
G 	�G12,M12

G � ,

�9�

where the D�D matrices B�G12,M12
G 	 are given by

B�G12,M12
G 	 = �

m1,m2

A�m1	A�m2	
G12,M12
G �Gd,m1;Gd,m2� .

�10�

Here G12’s distinguish the IRs of nearest-neighbor bond spin
channels and �G12,M12

G � are the states in IR channel G12.
Correspondingly, 
G12,M12

G �Gd ,m1 ;Gd ,m2� is the Clebsch-
Gordan coefficient to combine the states of Gd’s into the
states of G12. In the example of SU�2�, G12 denotes the total
bond spin S12 and −S12�M12

S �S12. After this coarse-
graining procedure, the VBS states are transformed to a ma-
trix product form with two-site block spins characterized by
the block-independent matrices B�G,MG	. Since the two-site
block-spin states �G12,M12

G � form a complete orthogonal set,
the null space in the reduced density matrix of a two-site

block is given by those IR channels with B�G12,M12
G 	=0.

The null space for more than two adjacent sites is no
longer easily visualized. However, the blocking process of g
matrices can be proceeded without any fundamental difficul-
ties �see Fig. 2�. In Sec. III B, we will study the spin-1 fer-
mionic VBS state by using this powerful method.

The uniqueness of the VBS ground states of the con-
structed Hamiltonians has to be further clarified. Generally,
the ground-state degeneracy will occur if there exists another
state with a larger null space in the reduced density matrix of
the present interaction range. To lift the degeneracy, one can
locate the null space in an extended range by blocking more
spins and modifying the Hamiltonian correspondingly. To
justify the uniqueness, it is helpful to numerically diagonal-
ize an open chain Hamiltonian with several lattice sites. If
the numerically calculated ground-state degeneracy is D2,
i.e., the ground states are all contained in the matrix product
form, one can prove the uniqueness of VBS ground states by
a mathematical induction method. The basic idea is to as-
sume that the VBS states ���,�� in Eq. �5� are the only
ground states of a projector Hamiltonian H�N� of an open
chain with N sites. Then, the ground states of an open chain
with N+1 lattice sites can be written as the following super-
position of ���,�� and �mN+1�:

��N+1� = �
��,mN+1

W��,mN+1
���,�� � �mN+1� . �11�

The vectors �mN+1� on the site N+1 decouple from the ex-
cited states of H�N� because such a coupling does not gain
energy from the projector Hamiltonian H�N+1�. Now we
can change the notation W��,mN+1

�W�,�
�mN+1	 and then ��N+1�

can be immediately written in a matrix product form

� � � � � �� � � � � �
��
��

��
��

��
��

��
��

��
��

��
��

� � � � � �� � � � � �
��
��

��
��

��
��

��
��

��
��

��
��

FIG. 2. The schematic of the coarse-graining process that con-
verts the spins of successive sites to block spins. This procedure
leads to a matrix product state with block spins and the null space
of a block-spin-reduced density matrix can be identified.
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��N+1� = �
m1¯mN+1

Tr�A�m1	
¯ A�mN	W�mN+1	��m1 ¯ mN+1� ,

�12�

where D�D matrix W�mN+1	 can be fully determined because
��N+1� are the zero-energy ground states of H�N+1�. After
solving this eigenvalue problem, one can find that ��N+1� can
be written in the form of Eq. �4�. This final step completes
the mathematical induction proof. For periodic boundary
conditions, the VBS ground state should be a linear combi-
nation of the D2 states in Eq. �5� and be annihilated by the
extra projectors acting on the two ends of the chain. This will
lead to the VBS ground state in the form of Eq. �4�.

Actually, those matrix product states with D2 linearly in-
dependent ���,�� in a finite open chain satisfy the so-called
injective property.21,33,39 The injectivity of the matrix product
states not only ensures the ground-state uniqueness of the
parent Hamiltonian but also guarantees the existence of an
energy gap and the exponentially decaying correlation func-
tions of local operators.

III. GENERAL VBS STATES FOR QUANTUM INTEGER-
SPIN CHAINS

In Sec. II, we set up a framework to study the VBS states
with a built-in Lie group G. To test these abstract formal-
isms, we begin with the quantum integer-spin-S chains and
consider two classes of VBS states. In these two VBS
classes, the virtual particles transform under spin-J represen-
tations and 2S-dimensional SO�2S+1� spinor representations,
respectively. Toward the first class, Sanz et al.39 have ex-
plored SU�2�-invariant two-body Hamiltonians which have
such states as their eigenstates. In the present work, we fur-
ther require that these VBS states are unique ground states of
the parent Hamiltonians. However, the price we usually have
to pay is to include multispin interactions in the parent
Hamiltonians. This situation will be treated for the spin-1
fermionic VBS state in Sec. III B. For the second class, we
will show that these states are equivalent to the SO�2S+1�
symmetric matrix product states introduced in our previous
work.34 However, the present formalism explains the origin
of the emergent SO�2S+1� symmetry in these VBS states
and shows that their edge states are SO�2S+1� spinors.
Therefore, the two VBS classes are sharply distinct from
each other for S�3.

A. Spin-S VBS states with virtual spin-J particles

As a warm up, let us apply the formalism in Sec. II to the
spin-S VBS states with two virtual spin-J particles in each
site. It is well known that the product of two spin-J repre-
sentation

J � J = 0 � 1 � ¯ � 2J �13�

always contains a singlet and the physical spin-S representa-
tion if J�S /2. After replacing the SU�2� Clebsch-Gordan
coefficient P�,�

�m	 = 
S ,m �J ,� ;J ,�� in Eq. �1� and the spin-J
valence-bond singlet

�I�ij = �
�=−J

J

�− 1�J−����i � �− �� j �14�

in Eq. �3�, the �2J+1�� �2J+1� matrix A�m	 in Eq. �4� can be
written as

A�m	 = �
�,�

�− 1�J+�
S,m�J,�;J,− ���J,��
J,�� , �15�

where −J��, ��J. These A�m	 matrices are rank S irreduc-
ible spherical tensors and satisfy the following commutation
relations:

�Jz,A
�m		 = mA�m	,

�J�,A�m		 = ��S 	 m��S � m + 1�A�m�1	, �16�

where J� and Jz generate the spin-J representation of the
SU�2� algebra,

J� = �
�

��J 	 ���J � � + 1��J,� � 1�
J,�� ,

Jz = �
�

��J,��
J,�� . �17�

For the celebrated VBS states of the AKLT models, i.e.,
the case of virtual spin J=S /2, we can also use the
Schwinger boson representation to express the VBS states. In
the Schwinger boson language, the spin operators are ex-
pressed by

Si
+ = ai

†bi,Si
− = bi

†ai,Si
z = �ai

†ai − bi
†bi�/2, �18�

with a local constraint ai
†ai+bi

†bi=2S. Then, the
integer-spin-S VBS states of the AKLT models in a periodic
chain are expressed as11

�AKLT� = 
i

�ai
†bi+1

† − bi
†ai+1

† �S�v� , �19�

where �v� is the vacuum with no particle occupation. The
matrix product forms of these VBS states are obtained by
Totsuka and Suzuki.23 Since the null space of two neighbor-
ing sites is the total bond spin S+1, . . . ,2S channels, the
VBS states in Eq. �19� are exact ground states of AKLT
Hamiltonians10,11

HAKLT = �
i

�
ST=S+1

2S

JST
PST

�i,i + 1� , �20�

where all JST

0 and PST

�i , j� is the projection operator on
total bond spin channel ST. These SU�2� invariant projection
operators can be written as polynomials of spin-exchange
interactions Si ·S j up to 2S powers

PST
�i, j� = 

S�=0,

S��ST

2S
2Si · S j + 2S�S + 1� − S��S� + 1�

ST�ST + 1� − S��S� + 1�
. �21�

For S /2�J�S cases, at first glance, the null space of two
neighboring sites is given by the total bond spin channels
2J+1, . . . ,2S, which is smaller than the VBS states of AKLT
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model. According to Sec. II B, one may conclude that next-
nearest-neighbor interactions are needed to be construct their
parent Hamiltonians. However, there is an exception: the
VBS states with S=2 and J=3 /2. We will discuss this spe-
cial case in Sec. III C.

B. Spin-1 fermionic VBS states

Now we consider S=1 VBS state with virtual spin J=1,
which belongs to the class in Sec. III A. Since S=1 is the
only antisymmetric product of two virtual J=1 particles, one
can use the fermionic statistics to implement the projection
onto the physical S=1 subspace. Thus, the physical S=1
states are written as

�1� = c1
†c0

†�v�, �0� = c1
†c−1

† �v�, �− 1� = c0
†c−1

† �v� . �22�

The SU�2� spin operators are Si
a=��,=1

3 ci�
† S�

a ci �a=x ,y ,z�,
where Sa are the usual 3�3 spin-1 matrices. The total spin
Si

2=2 on each site is imposed by a local constraint
��=1

3 ci�
† ci�=2. In terms of these fermionic variables, the S

=1 VBS state with virtual spin J=1 can be exactly written as

��1� = 
i=1

N

�ci,1
† ci+1,−1

† − ci,0
† ci+1,0

† + ci,−1
† ci+1,1

† ��v� , �23�

which has a matrix product form in Eq. �4� with

A�1	 = �0 − 1 0

0 0 − 1

0 0 0
�, A�0	 = �1 0 0

0 0 0

0 0 − 1
� ,

A�−1	 = �0 0 0

1 0 0

0 1 0
� . �24�

Following the method in Sec. II B, we can construct the
parent Hamiltonian for this fermionic VBS state. To locate
the null space, it is sufficient to block three successive spins.
The tensor decomposition of three spin-1 representation
yields

1 � 1 � 1 = �0 � 1 � 2� � 1

= 1 � 0 � 1� � 2 � 1� � 2� � 3, �25�

which provides a natural basis for block spins. In this basis,
the block states can be denoted by �S12;S ,M�, where S and
M are total spin and magnetic quantum number of the three
sites and S12 is the total spin of the first two sites. For the
representations 1� and 2, we have S12=1. For the represen-
tations 1� and 2�, S12=2. For the representations 0 and 3, the
index S12 can be suppressed and does not lead to misunder-
standing.

After blocking the three spins, we obtain

g1g2g3 = �
m1m2m3

A�m1	A�m2	A�m3	�m1,m2,m3�

= �
S,M

�
S12

CS12

�S,M	�S12;S,M� , �26�

where the 3�3 matrices CS12

�S,M	 are given by

CS12

�S,M	 = �
m1m2m3


S12,m1 + m2�1,m1;1,m2�

�
S,M�S12,m1 + m2;1,m3�A�m1	A�m2	A�m3	.

The matrices CS12

�S,M	 can be calculated by using Eq. �24�.
First, we find that C�0,0	�0 and C�3,M	=0. This means that
the spin-0 singlet state is contained but the spin-3 states are
absent in every three-site block. The other nonvanishing ma-
trices CS12

�S,M	 satisfy the following equations

C2
�2,M	 = �3C1

�2,M	,

C2
�1,M	 = −�5

3
C1

�1,M	 =
�5

4
C0

�1,M	. �27�

According to Eq. �26�, the unnormalized states contained in
the three-site block g1g2g3 are one spin-0 state and three
spin-1 states

4�0;1,M� − �3�1;1,M� + �5�2;1,M�

with −1�M �1 and five spin-2 states

�1;2,M� + �3�2;2,M�

with −2�M �2. By using the Gram-Schmidt orthogonaliza-
tion method, we find that seven spin-3 states �3,M� with
−3�M �3, five spin-2 states

��2,M� = �3�1;2,M� − �2;2,M�

with −2�M �2, six spin-1 states

��1,M� = �3�0;1,M� + 4�1;1,M� ,

��1,M� = 4�0;1,M� − �3�1;1,M� −
19
�5

�2;1,M�

with −1�M �1 span the null space in the reduced density
matrix of the three-site block. Therefore, the three-site pro-
jector Hamiltonian for which the spin-1 fermionic VBS state
is the zero-energy ground state is thus given by

h = �3 �
�M��3

�3,M�
3,M� + �2 �
�M��2

��2,M�
�2,M�

+ �
�M��1

��1��1,M�
�1,M� + �1���1,M�
�1,M�� , �28�

where all �3, �2, �1, and �1�
0.
It is interesting to compare the spin-1 fermionic VBS state

with the spin-1 bosonic VBS state of AKLT model. In the
fermionic VBS state, the two-point spin-correlation function
decays exponentially with a correlation length �=1 / ln 2,
longer than that for the AKLT model ��=1 / ln 3�. Besides the
obvious difference of the edge spin representation in an open
chain, we can also see a sharp difference by computing the
nonlocal string order parameter14,23
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O��� = lim
�j−i�→�

�Si
z

r=i

j−1

exp�i�Sr
z�Sj

z� . �29�

By using the transfer-matrix method,22 we arrive at the result
O���= 1

9sin2 � for the fermionic VBS state. For comparison,
the values of the nonlocal order parameter O��� for both the
spin-1 fermionic VBS state and bosonic VBS state of the
AKLT model are plotted in Fig. 3. For the spin-1 bosonic
VBS state, O��� reaches its maximum at �=�, which is
reduced to the den Nijs-Rommelse string order parameter
characterizing the hidden antiferromagnetic order in the
AKLT VBS state. However, in the fermionic VBS state,
O��� has a minimum O���=0 and the maximum value 1/9 at
both �=� /2 and 3� /2. This signifies that the hidden antifer-
romagnetic picture totally breaks down in the S=1 fermionic
VBS state. How to describe such a state has not been clear so
far.

C. VBS states with an emergent SO(2S+1) symmetry

In Sec. III A, we have mentioned an exceptional example:
S=2 VBS states with virtual spin J=3 /2. Besides the absent
bond total spin ST=4 channel of neighboring sites, there is a
new forbidden channel ST=2 in this VBS state.34 Therefore,
its parent two-body Hamiltonian can be written as

H = �
i

�J1P2�i,i + 1� + J2P4�i,i + 1�	 , �30�

with J1, J2
0. According to Eq. �21�, the projector Hamil-
tonian �30� can be rewritten as

H = �

ij�

�3J2 − 80J1

84
Si · S j +

9J2 − 40J1

360
�Si · S j�2

+
10J1 + J2

60
�Si · S j�3 +

20J1 + J2

2520
�Si · S j�4� . �31�

In fact, the S=2 VBS state with virtual spin J=3 /2 has a
hidden SO�5� symmetry and its matrix product form was

studied by Scalapino et al.40 in an SO�5� symmetric ladder
system of interacting electrons.

The quantum spin-2 Hamiltonian in Eq. �30� belongs to a
distinct class of exactly solvable quantum integer-spin chains
presented by the first three of us very recently.34 The ground
states of these Hamiltonians are SO�2S+1� symmetric matrix
product states and exhibit hidden topological order. For S
=1, the SO�3� symmetric matrix product state becomes the
VBS state of spin-1 AKLT model. For S=2, the SO�5� sym-
metric matrix product state is the S=2 VBS state with virtual
spin J=3 /2. However, it was not clear whether this family of
matrix product states has a valence-bond picture for S�3.
By using the framework in Sec. II, we will show that there is
indeed a VBS picture for these matrix product states. Actu-
ally, the virtual particles in these VBS states transform under
the 2S-dimensional spinor representation of SO�2S+1�.

It is convenient to promote the symmetry of the system
and demand the spin-S states on each site transform under
the �2S+1�-dimensional vector representation of SO�2S+1�.
The tensor product of two SO�2S+1� vectors on the adjacent
sites can be decomposed as

2S + 1 � 2S + 1 = 1� � S�2S + 1� � S�2S + 3� , �32�

where the number above each underline is the dimension of
the corresponding IR. These SO�2S+1� IRs can be directly
related to SU�2� integer-spin IRs. Here 1� is the symmetric
spin singlet, while the antisymmetric channel S�2S+1� and
the symmetric channel S�2S+3� correspond to the total bond
spin ST=1,3 , . . . ,2S−1 and ST=2,4 , . . . ,2S states, respec-
tively. Therefore, the SO�2S+1� bond projection operators
can be expressed using the spin projection operators as

PS�2S + 1��i, j� = �
l=1

S

PST=2l−1�i, j� , �33�

PS�2S + 3��i, j� = �
l=1

S

PST=2l�i, j� . �34�

On each lattice site, the SO�2S+1� vectors can be formed
by tensor decomposition of two virtual 2S-dimensional
spinors

2S
� 2S = �

q=0

S � q

2S + 1
� , �35�

where � q
2S+1 �= �2S+1�!

q!�2S−q+1�! . Note that q=0 and q=1 in Eq. �35�
correspond to singlet representation and �2S+1�-dimensional
vector representation, respectively. For S=1, Eq. �35� recov-
ers the well-known decomposition 2� � 2� =1� � 3� of two spin-
1/2 spinors. For S=2, Eq. �35� can be interpreted as the de-
composition 4� � 4� =1� � 5� � 10, where the SO�5� spinors can
be viewed as spin-3/2 variables because SO�5��Sp�4�.
However, the SO�2S+1� spinors in Eq. �35� for S�3 do not
have SU�2� spin counterparts.

Following the discussions in Sec. II, the SO�2S+1� sym-
metric VBS states can be constructed by combining the vir-
tual spinors on the neighboring sites into valence-bond sin-
glets. By comparing Eqs. �32� and �35�, one finds that the IR
channel S�2S+3� for any two neighboring sites is absent in

FIG. 3. The nonlocal string order parameter O��� as a function
of the spin-twist angle � for the fermionic VBS state �solid line� and
the bosonic VBS state �dashed line� of the AKLT model.
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these VBS states. Here an interesting observation is that
those IR channels with q�2 in Eq. �35� are actually absent
for two adjacent sites due to the projection of two virtual
spinors onto the physical vector representation in each site.
Therefore, the SO�2S+1�-invariant parent Hamiltonian for
the SO�2S+1� symmetric VBS states is given by

H = �
i

PS�2S + 3��i,i + 1� . �36�

Since the null space of these VBS states is the nonzero even
total spin channels, we can extend the SO�2S+1�-invariant
parent Hamiltonian to the following SU�2�-invariant quan-
tum integer-spin Hamiltonian:

H = �
i

�
l=1

S

JlPST=2l�i,i + 1� , �37�

with all Jl
0.
Actually, the SO�2S+1� symmetric VBS states are

equivalent to the matrix product states studied in Ref. 34. In
the present VBS form, the origin of emergent SO�2S+1�
symmetry and the 2S edge states on each boundary of an
open chain are quite clear. Although the edge degrees of
freedom in S=1 and S=2 cases can be viewed as SU�2� spin
variables, they transform under SO�2S+1� spinor represen-
tation for S�3 cases. It is interesting to compare these
SO�2S+1� symmetric VBS states to the spin-S VBS states
formed by virtual spin J= �2S−1� /2 in Sec. III A. Although
they are both unique in a periodic chain and 4S-fold degen-
erate in an open chain, their distinct edge states show that
they belong to two different topological classes. These ex-
plicit examples imply that the ground-state degeneracy is not
sufficient to characterize the topologically ordered states.

IV. SO(5) SYMMETRIC VBS STATES

So far, we are restricted to the case of SU�2� integer spin
in each site. Actually, the method discussed in Sec. II can be
applied for a general Lie group G; we thus move on to SO�5�
Lie group, where the physical states transform under SO�5�
IRs.

The SO�5� Lie algebra has ten generators Lab �1�a�b
�5� satisfying the commutation relations

�Lab,Lcd	 = i��adLbc + �bcL
ad − �acL

bd − �bdLac� . �38�

Mathematically, the IRs of SO�5� are labeled by two integers
�p ,q�, with p�q�0. For the �p ,q� representation of SO�5�
Lie group, the dimensionality d�p ,q� and the Casimir charge
C�p ,q� are given by41

d�p,q� = �1 + q��1 + p − q��1 +
p

2
��1 +

p + q

3
� , �39�

C�p,q� = �
a�b

�Lab�2 =
p2

2
+

q2

2
+ 2p + q , �40�

respectively. The dimensionality and Casimir charge for the
simplest SO�5� irreducible representations are listed in Table
I.

A. Bosonic SO(5) VBS states

We begin with the ten-dimensional �2,0� adjoint represen-
tation of SO�5�. The bosonic SO�5� /Sp�4� VBS state of this
system was first considered by Schuricht and Rachel.37 Their
strategy is to construct the �2,0� adjoint representation by
two virtual particles transforming under the �1,0� spinor rep-
resentation,

�1,0� � �1,0� = �0,0� � �1,1� � �2,0� , �41�

where �0,0� and �1,1� are antisymmetric and �2,0� is the only
symmetric product representation. Therefore, one can obtain
the physical �2,0� adjoint representation by endowing
bosonic statistics to the virtual �1,0� spinor particles. This is
analogous to the SU�2� Schwinger boson representation that
symmetrizes two spin-1/2 spinors to construct a spin-1 rep-
resentation. Using the four-component SO�5� Schwinger
bosons, the SO�5� generators in Eq. �38� can be defined as

Lab = −
1

2 �
�,=1

4

b�
† ��

ab b, �42�

where �ab= ��a ,�b	 /2i and

�1,2,3 = � 0 i��

− i�� 0
�, �4 = �0 I

I 0
�, �5 = � I 0

0 − I
� .

�43�

For the �2,0� adjoint representation with ��=1
4 b�

† b�=2, the
ten states in a bosonic language are shown in the �2,0�
weight diagram in Fig. 4. After a rotation by 45°, this weight
diagram is identical to that given by Schuricht and Rachel.
Here we choose the Clifford algebra generated by the � ma-
trices to define the SO�5� generators. The advantage of our
convention is to find an interesting nonlocal hidden string
order in the �2,0� bosonic VBS state below.

The �2,0� bosonic SO�5� VBS state is formed by contract-
ing two �1,0� spinors on neighboring sites into a valence-
bond SO�5� singlet. Its wave function can be written com-
pactly as

��2� = 
i
��

�

bi,�
† R�bi+1,

† ��v� , �44�

where the antisymmetric matrix R is given by

TABLE I. Several irreducible representations of the SO�5� Lie
group.

Representation Dimension Casimir charge

�0,0� 1 0

�1,0� 4 5/2

�1,1� 5 4

�2,0� 10 6

�2,2� 14 10

�3,1� 35 12

�4,0� 35 16
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R = �− i�y 0

0 − i�y � , �45�

with the following properties:

R2 = − 1, R† = R−1 = RT = − R ,

R�aR−1 = ��a�T, R�abR−1 = − ��ab�T. �46�

The tensor product decomposition of two neighboring �2,0�
adjoint representations is written as

�2,0� � �2,0� = �0,0� � �1,1� � �2,0� � �2,2� � �3,1�

� �4,0� . �47�

In the �2,0� bosonic VBS state, a valence-bond singlet of two
virtual �1,0� spinors are created and therefore the two adja-
cent sites can only transform �0,0�, �1,1�, and �2,0� represen-
tations according to Eq. �41�. Consequently, ��2� is an exact
ground state of the projector Hamiltonian

H = �
i

�J1P�2,2��i,i + 1� + J2P�3,1��i,i + 1� + J3P�4,0��i,i + 1�	 ,

�48�

where J1, J2, and J3
0 and P�2,2�, P�3,1�, and P�4,0� are pro-
jectors onto the �2,2�, �3,1�, and �4,0� representations, respec-
tively.

Furthermore, the �2,0� bosonic VBS state contain a well-
defined hidden string order. This can be observed in its ma-
trix product wave function with the local matrix

gi =�
�0,0� �2�1,1� �0,1� �1,0�

− �2�− 1,− 1� − �0,0� − �− 1,0� − �0,− 1�

�0,− 1� �1,0� �0,0�� �2�1,− 1�
− �− 1,0� − �0,1� − �2�− 1,1� − �0,0��

�
i

,

where we take �0,0�=b1
†b2

†�v� and �0,0��=b3
†b4

†�v�. In both of
the m1 and m2 channels, it can be shown that �m�� ��
=1,2� has a hidden antiferromagnetic order. In other word,
the states of m�=1 and −1 will alternate in space if all the
m�=0 states between them are ignored. A typical configura-
tion of this state is given by

m1: ¯ 0↑00↓↑↓000↑0↓0↑¯

m2: ¯ 0↑000↓↑0↓00↑↓00¯

where �↑ ,0 ,↓� represent �m�= ��1� , �0� , �−1��. This hidden an-
tiferromagnetic order is in analogy with the spin-1 VBS state
of AKLT model12 and its SO�2S+1� generalization.34 To
characterize this hidden antiferromagnetic order, one can
generalize the den Nijs-Rommelse string order parameters as

Oab = lim
�j−i�→�

�Li
ab

r=i

j−1

exp�i�Lr
ab�Lj

ab� . �49�

In fact, the nonlocal string order parameters for the Cartan
generators introduced by Schuricht and Rachel37 are combi-
nations of our O12 and O34. The advantage of our convention
is that the string order parameters in Eq. �49� clearly reflect a
hidden antiferromagnetic order in the �2,0� bosonic SO�5�
VBS state. The value of these string order parameters can be
obtained by a probability argument. These nonlocal string
order parameters should all be equal to each other because
the VBS state preserves SO�5� symmetry. Thus, we only
need to evaluate the value of O12 by considering the m1
channel. The role of the nonlocal string phase factor in Eq.
�49� is to correlate the finite spin-polarized states in the m1
channel at the two ends of the string. If nonzero m1 takes the
same value at the two ends, then the phase factor is equal to
1. On the other hand, if a nonzero m1 takes two different
values at the two ends, then the phase factor is equal to −1.
Thus, the value of O12=9 /25 is a square of the probability of
the nonzero m1= �1 appearing at the ends of the string.
Correspondingly, a generalized Kennedy-Tasaki unitary
transformation can be designed according to Ref. 34 and we
expect that the SO�5� symmetry of the original Hamiltonian
is reduced to �Z2�Z2�2 under such a nonlocal transforma-
tion. The nonlocal string order parameters in Eq. �49� for the
Cartan generators will be transformed to two-point correla-
tion functions, which properly characterize the hidden �Z2
�Z2�2 symmetry breaking. Thus, in this state, the nonlocal
string order and the 16-fold degeneracy in an open chain can
be viewed as natural consequences of a hidden �Z2�Z2�2

symmetry breaking.
In fact, the bosonic SO�5� VBS state of �2,0� adjoint rep-

resentation can be generalized to the totally symmetric �p ,0�
representation with even p. Namely, �p ,0� representation for
even p can be constructed by two �p /2,0� representations.
However, there is an alternative way to take the advantage of

�� � �

� � �

� � �

L12

L34

−1

1

−1 1

1√
2
(b†2)

2 |v〉1√
2
(b†3)

2 |v〉

1√
2
(b†1)

2 |v〉 1√
2
(b†4)

2 |v〉

b†1b
†
2 |v〉

b†3b
†
4 |v〉

b†1b
†
4 |v〉

b†2b
†
3 |v〉

b†1b
†
3 |v〉 b†2b

†
4 |v〉

FIG. 4. Weight diagram and the bosonic realization of the �2,0�
adjoint representation of SO�5�. There is a twofold degeneracy with
L12=L34=0.
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a generalized Schwinger boson representation. Using the
generalized Schwinger boson representation, the �p ,0� rep-
resentation in each site can be constructed by symmetrization
of p spinors and the local constraint is now replaced with
��=1

4 b�
† b�= p. Thus, the bosonic SO�5� VBS states for �p ,0�

representation can be written as

��3� = 
i
��

�

bi,�
† R�bi+1,

† �p/2
�v� . �50�

In an open chain, there are fractionalized edge states trans-
forming under �p /2,0� representation. Once a CP3 coherent
state representation36 is used, the �p ,0� VBS states have the
Jastrow form. They are analogous to the fractional quantum
Hall states in CP3 space42 at filling fraction =2 / p, in the
same sense as the resemblance11 between VBS states of
AKLT model and the fractional quantum Hall states in
spherical geometry.

Since the tensor product decomposition of two �p ,0� rep-
resentations is given by

�p,0� � �p,0� = �
k=0

p

�
l=0

k

�k + l,k − l� �51�

and p /2 valence-bond singlets are created between adjacent
sites in ��3�, the only finite projection on two adjacent sites
is given by

�p/2,0� � �p/2,0� = �
k=0

p/2

�
l=0

k

�k + l,k − l� . �52�

Thus, the null space of the two-site-reduced density matrix is
given by a sum of the representations written as
�k=p/2+1

p �l=0
k �k+ l ,k− l� and the corresponding parent Hamil-

tonian of ��3� is given by

H = �
i

�
k=p/2+1

p

�
l=0

k

J�k+l,k−l�P�k+l,k−l��i,i + 1� , �53�

where all J�k+l,k−l�
0 and P�k+l,k−l� is the projection operator
onto the �k+ l ,k− l� representation states.

With the help of the Casimir charge in Eq. �40�, the SO�5�
projectors can be written as polynomial functions of SO�5�
generators. According to Eq. �51�, these projectors satisfy a
completeness relation

�
k=0

p

�
l=0

k

P�k+l,k−l��i, j� = 1. �54�

Considering the two-site Casimir charge �a�b�Li
ab+Lj

ab�2, we
can write the SO�5� Heisenberg interaction as

�
a�b

Li
abLj

ab =
1

2�
k=0

p

�
l=0

k

�C�k + l,k − l� − �p2 + 4p�	P�k+l,k−l��i, j� .

�55�

Using the properties of the projectors, we have

��
a�b

Li
abLj

ab�n

=
1

2n�
k=0

p

�
l=0

k

�C�k + l,k − l� − �p2 + 4p�	nP�k+l,k−l��i, j� .

�56�

Together with the completeness relation �54�, this formula
can be inverted, so that each projector can be represented by
a polynomial function of SO�5� Heisenberg interaction
�a�bLi

abLj
ab.

B. Fermionic SO(5) VBS state

In this subsection, we present another way to construct the
�2,0� adjoint representation, i.e., by using two �1,1� vector
representations,

�1,1� � �1,1� = �0,0� � �2,0� � �2,2� , �57�

where the �2,0� adjoint representation is antisymmetric and
�0,0� and �2,2� are symmetric. This is because the orthogonal
groups have a general property that the adjoint representation
is the only resulting antisymmetric channel of two vector
representations.34 The simplest realization of this property is
the SO�3� spin-1 case discussed in Sec. III B, where the an-
tisymmetrization of two vector spin-1 representations only
yields the spin-1 adjoint representation.

If we use the fermionic statistics to implement the anti-
symmetrization, the ten states in the adjoint representation
can be written as ca

†cb
†�v�, where 1�a�b�5. Moreover, the

SO�5� generators are defined by

Lab = i�ca
†cb − cb

†ca� �58�

and a double occupancy constraint �a=1
5 ca

†ca=2 can guaran-
tee the adjoint representation in each lattice site. Using these
fermionic variables, the �2,0� weight diagram is shown in
Fig. 5.

�� � �

� � �

� � �

L12

L34

−1

1

−1 1

1
2 (c†1 − ic†2)(c

†
3 − ic†4) |v〉1

2 (c†1 + ic†2)(c
†
3 − ic†4) |v〉

1
2 (c†1 + ic†2)(c

†
3 + ic†4) |v〉 1

2 (c†1 − ic†2)(c
†
3 + ic†4) |v〉

c†1c
†
2 |v〉

c†3c
†
4 |v〉

1√
2
(c†3 + ic†4)c

†
5 |v〉

1√
2
(c†3 − ic†4)c

†
5 |v〉

1√
2
(c†1 + ic†2)c

†
5 |v〉 1√

2
(c†1 − ic†2)c

†
5 |v〉

FIG. 5. Weight diagram and the fermionic realization of the
�2,0� adjoint representation of SO�5� Lie algebra.
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Using the fermion variables, the �2,0� fermionic VBS
state with two virtual �1,1� vector SO�5� representations can
be written as

��4� = 
i
��

a

ci,a
† ci+1,a

† ��v� . �59�

In an open chain, the edge spins transform under �1,1� vector
SO�5� representation, different from the �1,0� spinor SO�5�
representation in the �2,0� bosonic SO�5� VBS state. Another
interesting observation is that the perfect nonlocal string or-
der presence in the �2,0� bosonic SO�5� VBS state vanishes
in the fermionic VBS state, because the string order param-
eter �49� for this state is found to be zero. In this sense, the
bosonic and fermionic �2,0� VBS states can be viewed as
SO�5� generalizations of spin-1 VBS states of AKLT model
and fermionic VBS state in Sec. III B.

Finally, using two-body interactions, one can construct the
parent Hamiltonian for this fermionic SO�5� VBS state.
Since any two adjacent sites can only transform under �0,0�,
�2,0�, and �2,2� representations, ��4� is an exact zero-energy
ground state of the projector Hamiltonian

H = �
i

�K1P�1,1��i,i + 1� + K2P�3,1��i,i + 1�

+ K3P�4,0��i,i + 1�	 , �60�

for K1, K2, and K3
0. The possible hidden order is still
under investigation.

V. CONCLUSION

In conclusion, we have presented a general method to
construct one-dimensional VBS states embedded with Lie
group G and their parent Hamiltonians. This provides ex-
amples that the topologically ordered states can be system-
atically generated in one dimension and are characterized by
their edge state representations as well as their ground-state
degeneracy.

For quantum integer-spin-S chains, there exists two topo-
logically distinct families: �i� the virtual particles transform
under SU�2� spin-J representations and �ii� the virtual par-
ticles are SO�2S+1� spinors. In the first class, a spin-1 fer-
mionic VBS state is constructed as an explicit example.
Compared to the celebrated S=1 valence-bond solid state of
AKLT model, the fermionic valence-bond solid state shows
drastic differences on the edge states and hidden string order.
For the second class, it has been shown that these valence-
bond solid states with an emergent SO�2S+1� symmetry are
equivalent to the previously proposed SO�2S+1� symmetric
matrix product states.34 The present formalism explicitly dis-
plays that the edge states of an open chain transform under
the SO�2S+1� 2S-dimensional spinor representation.

To generalize the VBS states in SU�2� symmetric quan-
tum integer-spin chains, two types of VBS states with the
SO�5� symmetry are considered including �i� bosonic SO�5�
VBS states formed by a symmetrization of two spinor repre-
sentations in each site and �ii� a fermionic SO�5� VBS state
with �2,0� adjoint representation formed by antisymmetriza-
tion of two vector representations.

It can be expected that the ideas and formalism developed
in this work are very useful and can be generalized to the
tensor product states �projected entangled pair states� for
higher dimensional correlated systems.43 The understanding
of the physical properties of these states is the first step to
characterize higher dimensional topological states, which
certainly deserves further investigations.
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